Основные методы решения иррациональных уравнений и неравенств

Скачать текст в WORD

Основной подход к решению иррациональных уравнений и неравенств – это их рационализация, то есть приведение их к рациональным алгебраическим уравнениям и неравенствам. Но между процедурами решения иррациональных неравенств и иррациональных уравнений существует заметное различие. При решении иррациональных неравенств постоянно необходимо следить за тем, чтобы после каждого преобразования получалось неравенство эквивалентное исходному неравенству. Отсюда и получаем различные методы решения иррациональных уравнений и неравенств.

Метод возведения в степень.

Данный метод является одним из наиболее известных методов решения иррациональных выражений. При использовании данного метода, следует не забывать, что всякое уравнение и неравенство всегда можно возвести в нечетную степень, ведь это преобразование является равносильным. А если уравнение нужно возвести в четную степень, то в общем случае получается переход к следствию, что допустимо, если возможна проверка корней. Если же при решении проверка невозможна или крайне затруднительна по какой-либо причине (например, при решении неравенств и некоторых уравнений получается бесконечное число корней), то необходимо сохранять равносильность преобразований. Для этого перед каждым возведением в четную степень надо не забывать выписывать условия, при которых обе части уравнения будут неотрицательны. Если уравнение или неравенство содержит несколько радикалов, то для избавления от них придется несколько раз возводить в степень исходное уравнение или неравенство. В таком случае перед очередным возведением в степень используют прием уединения радикала. В общем виде данный метод можно записать так:

fx =gx ⟺ gx≥0,fx=g2x.

Для иррациональных неравенств метод возведения в степень будет выглядеть так:

fx<gx ⇔ fx≥0,gx>0,fx2<gx2.

fx>gx⇔fx>0,gx≥0,fx2>gx2 ∧ fx≥0,gx<0. [2, с.26]

Метод умножения на сопряженное выражение.

При использовании данного метода выражение, которое содержит радикал, одновременно умножается и делится на сопряженное к нему выражение. В результате такого преобразования иррациональность пропадает, и решение уравнения или неравенства значительно упрощается. Причем нельзя забывать о потере или приобретении лишних корней.

Пусть S – некоторое выражение, содержащее корни. Сопряженным множителем относительно S будет являться такое выражение Q, не равное тождественно нулю, а также такое, что произведение S∙Q не будет содержать корней.

Так для выражения S=nxp∙yq∙…∙zl, где p, q,…,l – натуральные числа, меньшие n, сопряженный множитель будет иметь вид

Q=nxn-p∙yn-q∙…∙zn-l , так как S∙Q=x∙у∙…∙z.

Для выражений вида S=x ±у (x,у≥0) сопряженный множитель

Q=x ∓у , так как S∙Q=x2- у2=x-у .

А для выражений вида S=3x±3у сопряженным множителем будет являться выражение вида

Q=3×2∓3xy+3у2 , так как S∙Q=3×3±3у3=x±у .

Для выражения вида S=nx-ny (x,e≥0, n∈N, n≥4) сопряженный множитель выглядит так

Q=nx n-1 +nxn-2у+…+пхуп-2+пуп-1 ,

так как S∙Q=nxn- nxn =x-у.

Выражение вида S=nx+n у имеет сопряженный множитель, который находится на основании формул сокращенного умножения

a2n+b2n=(a+b)(a2n-1-a2n-2b+…+ab2n-2-b2n-1 ,

a2n+1+b2n+1=(a+b)(a2n-a2n-1b+…-ab2n-1+b2n. [14 с.228-229]

Метод замены переменных.

Рационализирующие подстановки. Данный метод позволяет преобразовать иррациональное уравнение (неравенство) к рациональному виду. В таком случае можно говорить о рационализации уравнений и неравенств. Этот метод обычно применяется, если в уравнении (неравенстве) неоднократно встречается некоторое выражение, зависящее от переменной. Тогда можно обозначить это выражение какой-нибудь новой буквой и решить задачу относительно новой переменной, а только потом найти исходную неизвестную. Зачастую некоторые иррациональные уравнения и неравенства удается решить только при помощи введения двух вспомогательных переменных и последующего перехода к рациональной системе. Иногда подходящей заменой переменной иррациональное уравнение или неравенство можно свести к тригонометрическому уравнению или неравенству. Наиболее распространенной является подстановка пах+b=t. [17 с.17]

Решение уравнений (неравенств) на отдельных промежутках ОДЗ. Учет ОДЗ. В некоторых случаях может возникнуть необходимость разбить ОДЗ уравнения (неравенства) на отдельные промежутки, а затем на каждом из них решать данную задачу. Такая ситуация может возникнуть при выполнении преобразований, которые связаны с необходимостью разбить корень из произведения двух чисел или выражений на произведение корней, или если необходимо внести какую-либо величину под знак корня четной степени.

аЬ=аЬ , если a≥0, b≥0;-a-b, если a≤0, b≤0.

ab=a2b, если a≥0;-a2b, если a≤0. [11 с.73]

Метод выделения полных квадратов.

Данный метод основан на применении формулы a2 =a. [11 с.74]

Классификация иррациональных уравнение и неравенств по методам их решения

Каждый из выявленных выше методов подходит для решения не всех иррациональных уравнений и неравенств. Поэтому имеет место классификация иррациональных уравнений (неравенств) по методам их решения.

Метод возведения в степень подходит для решения большинства распространенных видов иррациональных уравнений и неравенств. Для каждого из таких видов существует стандартная схема решения.

Уравнения вида fx =gx ⟺ gx≥0,fx=g2x.

Неравенства вида fx<gx ⇔ fx≥0,gx>0,fx2<gx2;

fx≤gx ⇔ fx≥0,gx≥0,fx2≤gx2.

Неравенства вида

f(x)≥g(x)⇔gx≥0fx≥g2xg(x)<0fx≥0; и

f(x)>g(x)⇔gx≥0fx>g2xg(x)<0fx≥0. [18 с.78]

Уравнения вида fx=g(x)⇔fx≥0 или gx≥0fx=gx.

Неравенства вида

fx≤g(x)⇔fx≥0 fx=gx; fx<g(x)⇔fx≥0fx<gx.

Уравнения вида nf(x)=mgx⇔x ∈ОДЗnfxНОК (n,м)=mgxНОК (n,м).

Неравенства вида

2n+1f(x)<2n+1g(x) ⇔fx<gx;

2n+1f(x)≤2n+1g(x) ⇔fx≤gx.

Используя метод умножения на сопряженное можно решить практически любое иррациональное уравнение (неравенство). Главным условием является наличие в одной из частей иррационального уравнения (неравенства) выражения, содержащего радикал, к которому можно найти сопряженное отличное от нуля.

Для большинства подстановок необходимы какие-то условия или наличие некоторого выражения в составе уравнения (неравенства), которое можно заменить определенным образом.

Так уравнения вида пах+b±mcx+d=p (где a, b, с, d – некоторые числа, n, м – натуральные, которые обычно не превосходят 4) решаются обычно двойной подстановкой v=nax+b и и=мсх+d, благодаря которой получаем уравнение v+и=p.

Для таких тригонометрических подстановок как x=a sint, t∈-π2;π2 и x=a cost, t∈0;π необходимо наличие в уравнении или неравенстве радикала a2 -x2.

Для замены x=a tant, t∈-π2;π2 или x=acott, t∈0;π необходим радикал a2 +x2.

Если в иррациональном уравнении (неравенстве) присутствует радикал x2-a2, то можно говорить о подстановке вида x=asint, t∈-π2;π2 и x=acost, t∈0;π. [14 с.233-236]

Метод учета ОДЗ и решения задачи на отдельных промежутках ОДЗ не требует от иррациональных уравнений и неравенств определенных требований. Но, например, корни неравенства f(x)>-p можно найти, определив ОДЗ, так как левая часть неравенства всегда больше правой.

Для метода выделения полных квадратов необходимо чтобы под знаком одного радикала второй степени находились две переменные или два выражения, содержащие неизвестную, степени которых различаются в два раза. Например, в уравнении вида x2+2ax+a2-x+b2-2bx=p под знаками радикала можно выделить полные квадраты выражений и использовать формулу a2 =a, и в результате получится следующее уравнение x+a-x-b=p.

Скачать текст в WORD

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *